Мнение владельцев загородных домов о системе
Как считает большинство хозяев загородной недвижимости, схема эта действительно очень эффективная — петля Тихельмана. Отзывы такая система заслужила просто отличные. В доме при правильном ее проектировании и сборке устанавливается очень комфортный микроклимат. При этом само оборудование системы редко ломается и служит долго.
Хорошо отзываются о петле Тихельмана не только владельцы жилых домов, но и хозяева дач. Система отопления в таких зданиях в холодное время года зачастую используется нерегулярно. Если разводка выполнена по тупиковой схеме, при включении котла помещения прогреваются крайне неравномерно. С попутной системой таких проблем, конечно же, не возникает. Но обходится сборка отопления по такой схеме действительно дороже чем по тупиковой.
Порядок выполнения монтажных работ
Работы состоят из следующих операций:
- Установка котла. Необходимая минимальная высота комнаты для его размещения 2,5 м, допустимый объём помещения равен 8-ми куб. м. Требуемая мощность оборудования определяется расчётом (примеры приведены в специальных справочных изданиях). Ориентировочно для обогрева 10-ти кв. м необходима мощность в 1кВт.
- Навеска радиаторных секций. Рекомендуется использование в частных домах биометрических изделий. После подбора необходимого количества радиаторов, выполняется разметка их расположения (как правило, под оконными проёмами) и крепление с помощью специальных кронштейнов.
- Протягивание магистрали попутной системы отопления. Оптимально применение металлопластиковых труб, успешно выдерживающих высокие температурные режимы, отличающиеся долговечностью и лёгкостью монтажа. Основные трубопроводы (подача и “обратка”) от 20-ти до 26-ти мм и 16-ти мм для подсоединения радиаторов.
- Установка циркуляционного насоса. Монтируется на обратной трубе вблизи котла. Врезка выполняется через байпас с 3-мя кранами. Перед насосом обязательна установка специального фильтра, что послужит значительному увеличению сроков эксплуатации прибора.
- Монтаж расширительного бака и элементов обеспечивающих безопасность работы оборудования. Для системы отопления с попутным движением теплоносителя выбираются только мембранные расширительные бачки. Элементы группы безопасности поставляются в комплекте с котлом.
Для обводки магистралью дверных проёмов в подсобках и помещениях хозяйственного назначения допускается монтировать трубы прямо над дверью. В этом месте, для исключения накапливания воздуха, обязательно устанавливаются автоматические воздухоотводчики. В жилых помещениях трубы могут прокладываться под дверью в теле пола или обходом препятствия с использованием третьей трубы.
Схема Тихельмана для двухэтажных домов предусматривает определённую технологию. Трубная разводка выполняется с завязыванием всего здания целиком, а не каждого этажа по отдельности. Рекомендуется на каждом этаже устанавливать по одному циркуляционному насосу с сохранением равных длин обратных и подающих трубопроводов для каждого радиатора в отдельности в соответствии с основным условиям попутной двухтрубной системы отопления. Если установить один насос, что вполне допустимо, то при его выходе из строя произойдёт отключение отопительной системы во всём здании.
Многие специалисты считают целесообразным устройство общего стояка на два этажа с отдельной трубной разводкой на каждом этаже. Это позволит учесть различие потерь тепла на каждом этаже с подбором диаметров труб и количества необходимых секций в радиаторных батареях.
Раздельная попутная схема отопления на этажах значительно упростит настройку системы и позволит осуществить оптимальную балансировку нагрева всего здания. Но для получения должного эффекта обязательно необходима врезка в контур попутки балансировочного крана для каждого из двух этажей. Краны можно расположить рядом непосредственно вблизи котла.
Двухтрубная система отопления, разные схемы (схема Тихельмана)
- Автор видео: Марат Ишмуратов
- Канал автора: https://www.youtube.com/channel/UCyrdKMbXbRXONaCrEY0rnPg
- Видео:
Мы рассмотрим двухтрубную систему отопления, варианты её подключения с преимуществами и недостатками.
- Первая схема подключения
В любой системе имеется котёл для отопления и радиаторы, расположенные по периметру дома.
По этой трубе горячий теплоноситель подаётся от котла, проходит по порядку все радиаторы, отдавая тепло, на последнем разворачивается, и по второй трубе, собирая обратку со всех радиаторов, возвращается обратно в котёл.
Обычно при такой схеме основные трубы подачи и обратки имеют диаметр 25 мм, а радиаторы подключаются трубами диаметром 20 мм.
Данная схема подключения работает следующим образом. Горячий теплоноситель выходит с котла, доходит до первого радиатора, разогревает его и после этого по обратке возвращается в котёл.
Таким образом, данный радиатор находится первым на подаче и обратке, в самых благоприятных условиях. У него наиболее сильные подача и обратка. Потом теплоноситель идёт ко второму радиатору, разогревает его, и возвращается обратно в котёл. Соответственно, данный радиатор находится вторым на подаче и на обратке, и тоже имеет благоприятные условия.
Так разогреваются все радиаторы, вплоть до последнего, девятого на подаче и обратке.
У него наименее благоприятные условия для работы, самые слабые подача и обратка.
Если запустим эту схему с открытыми вентилями, то получится следующее: первый радиатор запустится на 100%, второй на 85%, третий на 65%, четвёртый на 40% и пятый на 10%. Оставшиеся радиаторы сами не запустятся.
Конечно, бывают разные и дома, и протяжённость труб, и количество секций. Поэтому система может работать лучше или хуже, но в любом случае для того, чтобы заставить все радиаторы работать, нужно искусственно создать сопротивление для теплоносителя в первых радиаторах с помощью балансировочных клапанов.
После балансировки первый радиатор разогреется на 100%, второй на 95%, третий на 90%, и так до последнего радиатора. Несколько последних радиаторов при этом никогда не запустятся больше, чем на 60% от своей мощности.
Последние радиаторы будут работать хуже всех. Такая схема имеет и другой недостаток. Например, в этой комнате вы решили убавить мощность радиатора или полностью его закрыть.
В этом случае вы повлияете на работу других радиаторов:
Если вы снизите мощность своего радиатора, другие начнут греть чуть лучше, если вы прибавите обратку, они будут работать хуже. Можно улучшить данную схему, например, увеличить диаметр труб подачи и обратки, либо добавить секции к каждому радиатору.
Система получится более дорогой, при этом вот эти радиаторы на 100% работать не будут:
Соответственно, одна часть схемы зажата, а вторая не может запуститься и нормально заработать.
С точки зрения гидравлики не в самых лучших условиях находится и котёл, и циркуляционный насос, и вся система.
- Второй вариант подключения этих радиаторов по двухтрубной системе
С котла подача подключается к коллектору на два выхода, затем разные ветки подключаются к разным радиаторам:
По такой же схеме через двойной коллектор подключается и обратка. Образуются два радиаторных контура.
Получаются более короткие контуры подачи и обратки, но в таком случае придётся производить балансировку не только на радиаторах, но и на коллекторе радиаторных контуров, потому что на практике практически не бывает такого, чтобы обе ветки были совершенно одинаковыми и имели одинаковое гидравлическое сопротивление.
При таком схеме радиаторы будут работать гораздо лучше, даже последние радиаторы, но на 100% от своей тепловой мощности они не запустятся.
- Третья схема подключения
Эта схема называется схемой Тихельмана. В ней подача идёт до последнего радиатора, и обратка начинается с последнего радиатора, и на выходе получается вот что:
Здесь тоже трубы подачи и обратки имеют диаметр 25 мм, а к радиаторам идут трубы диаметром 20 мм.
Давайте посмотрим, как будет работать данная схема подключения. С котла теплоноситель поступает в первый радиатор, и с него начинается обратка.
Таким образом, данный радиатор является первым на подаче и девятым на обратке, то есть имеет наиболее сильную подачу и наиболее слабую обратку. Затем теплоноситель разогревает следующий радиатор, который является вторым на подаче и восьмым на обратке.
По сравнению с предыдущим, у него получается несколько хуже подача, но зато несколько лучше обратка. Рассмотрим вот этот радиатор:
Он получается девятый на подаче и первый на обратке, то есть у него наиболее слабая подача и наиболее сильная обратка, поскольку он находится ближе всех к котлу по обратной линии:
Рассмотрим данный радиатор:
Он получается восьмым на подаче и вторым на обратке. При такой схеме уже не требуется производить балансировку самих радиаторов. Если все радиаторы и вентиля будут открыты полностью, всё равно все радиаторы запустятся на 100% своей мощности.
При такой схеме подключения все радиаторы работают совершенно независимо друг от друга.
Если на каком-то любом радиаторе требуется убавить или прибавить мощность, это совершенно не повлияет на работу остальных радиаторов. У данной схемы имеется и другое преимущество: весь теплоноситель движется в одном направлении.
Теплоносителю не надо разворачиваться, он продолжает двигаться в том же направлении, и с точки зрения гидравлики это очень хорошо. Данную ситуацию можно сравнить с автомобильным движением.
Это похоже на кольцевую дорогу без светофоров и резких разворотов на 180°, где всё регулируется само по себе. При всех описанных плюсах у данной схемы есть и один небольшой минус.
Получается, что слева сильная подача, справа сильная обратка, а где-то посередине, при переходе сильной обратки в сильную подачу, имеется равенство сил, и если на это место встанет радиатор, то он работать не будет.
В жизни такое случается довольно редко, но уж если случилось, можно решить эту проблему, перенеся радиатор вправо или влево буквально на 1 метр.
Если не получается перенести радиатор, можно удлинить трубу до или после радиатора. Можно сделать такую петлю:
После этого радиатор будет греть точно так же, как и все остальные.
Петля Тихельмана на два этажа или более
Чаще всего такая система отопления монтируется в одноэтажных зданиях большой площади. Именно в таких домах она работает наиболее эффективно. Однако иногда такую систему собирают и в двух-трехэтажных зданиях. При выполнении разводки в таких домах следует придерживаться определенной технологии. По схеме Тихельмана в данном случае завязывается не каждый этаж по отдельности, а все здание в целом. То есть сохраняется равная сумма длин обратного и подающего трубопровода для каждого радиатора дома.
Петля Тихельмана на два этажа собирается, таким образом, по особой схеме. Также специалисты считают, что использовать только один циркуляционный насос в этом случае нецелесообразно. Если имеется такая возможность, в здании стоит установить по одному такому прибору на каждом этаже. В противном случае при поломке единственного насоса, отопление будет отключено во всем доме сразу.
Схема отопительной системы для дома петли Тихельмана
В основном предусматривается прокладка отопительного трубопровода под напольным покрытием в тоннелях, одетым в теплоизоляционные оболочки, чтобы не разрушать конструкции перегревом. Полы делаются либо на лагах, либо укладывается толстая стяжка теплый пол. Применяется в основном гибкий трубопровод, уголковые фитинги не используются.
В современных домах петля Тихельмана лишается своего главного недостатка — сложности прокладки замкнутого круга на распределитель. Может легко использоваться в небольших и больших площадях, при прокладке под полом. В последнее время все чаще используются внутрипольные конвектора под высокими окнами.
Одной из самых популярных разновидностей систем отопления в наше время является так называемая петля Тихельмана. Схема эта достаточно простая, но при выполнении разводки в данном случае, конечно же, нужно придерживаться определенной технологии. Перед монтажом такой системы обязательно следует составить подробный проект, сделав все необходимые расчеты. Схема отопления петля Тихельмана на самом деле очень проста. В этом случае подающая труба протягивается обычным образом — то есть от котла к последнему радиатору.
Петля Тихельмана окажется подходящей схемой для подключения конвекторов, более экономичной и устойчивой по сравнению с лучевой схемой при большом количестве более 4 шт. Частные дома всегда сжатой компоновки, длинные магистрали к отопительным приборам отсутствуют, — повышенное гидравлическое сопротивление в схемах не встречается.
Рекомендации делать расчеты системы отопления излишни, так как точные теплопотери здания самостоятельно установить не удастся, а применяемое оборудование стандартно, остается лишь выбрать из пары-тройки образцов подходящее.
Для определения диаметра труб для петли Тихельмана можно воспользоваться табличными данными, зависимости диаметра от необходимой энергии. При теплопотерях до 15 кВт м кв.
Область применения
Они же и используются для основных магистралей в большинстве случаев, — примерно до 8 радиаторов в кольце. При теплопотерях от 15 до 27 кВт до м кв. Диаметр трубопровода в петле можно уменьшить в соответствии с расчетом. И с условием указанным выше.
Что представляет собой система и как она монтируется
Во всяком случае, к последнему радиатору по подаче прокладывается минимальный диаметр — 16 мм. Для отапливаемой площади до м кв. Целесообразно делать общий стояк и прокладывать отдельное кольцо петли Тихельмана для каждого этажа. Важно учитывать, что энергопотери для каждого этажа будут значительно отличаться, в соответствии с этим и производится подбор радиаторов, а также диаметра труб.
Раздельные схемы в этажах позволят балансировать один этаж относительно другого и значительно упростят настройку системы. Важно лишь не забыть включить в контур попутки для каждого этажа балансировочный кран.
Области применения петли Тихельмана
Увеличенный расход материалов не всегда лучше, поэтому система Тихельмана в двухэтажном доме применяется редко. Исключение составляет магистраль с размещением радиаторов по периметру строения. Кольцевая система потребует значительных затрат на материалы, но обустройство замкнутого кольца выполняется только при отсутствии помех в виде дверных проемов, окон «в пол». Придется укладывать еще одну магистраль для возврата теплоносителя в прибор нагрева.
Если петля удлиняется, удаляется от нагревателя, повышается сечение труб или подбирается мощный циркуляционный насос, в противном случае система не сможет работать в полную силу.
Для снижения расходов теплоносителя в зоне подключения первых батарей диаметр трубопровода следует уменьшить, это поможет сохранить напор воды на последующих участках. Уменьшение диаметра производится только по предварительным расчетам, иначе радиаторы, удаленные от прибора нагрева на значительное расстояние, не получат теплоноситель в достаточном объеме.
Получается, что применять двухтрубную проводку с попутным током воды можно лишь при общей протяженности магистрали от 70 метров, на которой устанавливается от 10 радиаторов. В противном случае попутная разводка не оправдает вложенных средств.
Описание системы
В профессиональных кругах петля Тихельмана именуется двухтрубной системой отопления с попутным движением теплоносителя. Такое название полностью отражает суть и принцип работы, отличительные черты лучше всего видны на фоне двухтрубной системы с обратным движением теплоносителя, которая знакома практически всем.
Представим радиаторную сеть, развёрнутую в прямой ряд. При классической схеме тепловой узел расположен в начале этого ряда, от него вдоль всей сети следует две трубы для подачи горячего и возврата холодного теплоносителя соответственно. При этом каждый радиатор представляет собой своего рода шунт, поэтому, чем больше удаление нагревательного прибора от теплового узла, тем выше гидравлическое сопротивление в петле его подключения.
1 — Двухтрубная схема подключения радиаторов со встречным током теплоносителя в подаче и обратке; 2 — схема подключения Петля Тихельмана с попутным подключением
Если же мы ряд радиаторов свернём в кольцо, то оба его края будут примыкать к тепловому узлу. В этом случае гораздо выгоднее сделать так, чтобы возвратный трубопровод направлял теплоноситель не обратно в котельную, а продолжал следовать далее по цепочке, то есть попутно подаче. Иными словами труба подачи следует от теплового узла и заканчивается на крайнем радиаторе, в свою очередь возвратный трубопровод берет свое начало от первого радиатора и направляется в котельную. Этот же принцип может быть реализован, даже если радиаторы расположены в пространстве линейно, просто от места врезки крайнего радиатора в обратку труба разворачивается чтобы вернуть охлажденный теплоноситель. При этом на определенном участке система отопления будет трёхтрубной, так петлю Тихельмана тоже иногда называют.
Петля Тихельмана с размещением радиаторов по периметру здания. От каждого радиатора общая длина труб подачи и обратки примерно одинакова. 1 — котёл отопления; 2 — группа безопасности; 3 — радиаторы отопления; 4 — труба подачи; 5 — труба обратки; 6 — циркуляционный насос; 7 — расширительный бак
Но зачем нужны такие сложности? Если внимательно изучить схему, то окажется, что сумма длин питающего и возвратного трубопровода для каждого радиатора одинакова. Отсюда вывод: гидравлическое сопротивление каждой отдельно взятой петли подключения эквивалентно остальным участкам, то есть система попросту не нуждается в балансировке.
Что такое петля Тихельмана
Петля Тихельмана (еще называют «попутной схемой») — это схема разводки труб системы отопления. Такая схема сочетает в себе одновременно достоинства двух распространенных схем: ленинградской и двухтрубной, при этом обладая дополнительными преимуществами.
Если сравнивать с двухтрубной схемой, то при применении петли Тихельмана нет необходимости устанавливать дорогостоящие регулировочные системы. Отопительные приборы работают как один большой радиатор. Проток теплоносителя одинаков по всему контуру отопления. Отсутствуют сужения труб и тупиковые радиаторы, в которых проток хуже всего. Недостаток в сравнении с двухтрубной схемой отопления — необходимо всю ветку делать трубой большого диаметра, что может сильно сказаться на стоимости всей системы в целом.
Если сравнить с ленинградской (однотрубной) схемой — преимущество в том, что теплоноситель не пройдет по трубе мимо радиатора. Ленинградская схема очень требовательна к проекту схемы и монтажу. При невысокой квалификации выполнения либо первого либо второго, будет невозможно заставить воду проходить через отопительный прибор, она пройдет по трубе мимо. Радиатор же останется чуть теплым. К тому же, в ленинградской схеме первые по току воды радиаторы будут горячее, чем последуюцие. Так как вода дойдет до них уже охлажденная. Недостаток петли Тихельмана по сравнению с «ленинградкой» — увеличение расхода трубы почти в 2 раза.
Из общих достоинств хочется отметить, что такую схему трудно разбалансировать. Условия для движения теплоносителя почти идеальные, что, к тому же положительно отражается работе теплогенератора (будь то котел, солнечные системы или что-то еще).
Основной недостаток попутной схемы отоплния — определенные требования к помещению. На практике не всегда удается организовать круговое движение теплоносителя. Могут помешать дверные проемы, архитектурные особенности и т.п. К тому же возможно ее примененние только при горизонтальной разводке, при вертикальной петля Тихельмана не применима.
Петля тихельмана: схема для частных домов
Петля Тихельмана диаметр труб
Диаметры в петле Тихельмана выбираются так же, как и в двухтрубной тупиковой системе отопления. Там где расход больше, там и больше диаметр. Чем дальше от котла, тем меньше расход может получиться.
Если выбрать не правильные диаметры, то средние радиаторы будут плохо греть.
Подробнее о программе
Если в напорной системе отопления не создать искусственное гидравлическое сопротивление радиаторным веткам, то тоже не будут плохо греть средние радиаторы.
Какие условия нужно соблюдать в петле Тихельмана для того, чтобы средние радиаторы грели хорошо?
Каждая радиаторная ветка должна обладать гидравлическим сопротивлением равной 0,5-1 Kvs. Это сопротивление может выдать термостатический или балансировочный клапан, который ставится на линию радиатора. Как правило, когда делается экономия на термостатических и балансировочных клапанах (то есть не устанавливаются), то каждая радиаторная ветка начинает обладать малым гидравлическим сопротивлением, что сравнимо с тем, как если бы вы просто соединили подачу и обратку трубой (Грубо сделали байпас).
Примечание:
Для гравитационных систем отопления с естественной циркуляцией радиаторным веткам не нужно создавать искусственное сопротивление. Потому что за счет естественного напора теплоносителя радиаторная ветка сама влияет на свой расход.
Петля Тихельмана может применяться без насоса, но только с большими диаметрам, как это делается для гравитационных систем отопления с естественной циркуляцией. А для расчета диаметров вам поможет программа симулятор системы отопления: Подробнее о программе
Какие выбрать диаметры в петле Тихельмана?
Диаметры в петле Тихельмана не простая задача, как и выбор диаметров в двухтрубной тупиковой системе отопления. Принцип выбора диаметров зависит от расходов и потерь напора в трубопроводе.
Ниже вы увидите как выбираются диаметры.
Плохие цепи петли Тихельмана
Плохо будут работать средние радиаторы, если отсутствует искусственное гидравлическое сопротивление на радиаторных ветках. Искусственное сопротивление создается балансировочными или термостатическими клапанами. У которых пропускная способность равна 0,5 – 1,1 Kvs.
Напорная система отопления с шаровыми кранами и полипропиленовой трубой 20 мм.
Нельзя делать так на шаровых кранах:
Такая радиаторная ветка обладает малым гидравлическим сопротивлением. Она съест большой расход и другим радиаторам останется мало.
Была протестирована цепь на 5 радиаторов с магистральной трубой ПП 25мм.
Расходы у радиаторов не одинаковые. На третьем радиаторе самый маленький расход. Это вызвано тем, что на радиаторных ветках стоят шаровые краны.
Если добавить в цепь термостатические клапана, то расходы станут более разделенными поровну:
Картина уже лучше! Но диаметры можно уменьшить в некоторых местах и сэкономить на этом. Например, на подаче в магистрали до 4 радиатора и на обратке от 2 радиатора.
Если мы попробуем на всей магистрали оставить ПП20мм, то получим следующие расходы.
Если бы мы использовали термоклапан или любое регулирующее устройство на 2 Kvs, то переход диаметров нужно было бы делать обязательно!
Потому что, если кто-нибудь полностью откроет кран, то это помешает работать нормально другим радиаторам. Встречаются регулировочные клапана для радиаторов на 5 Kvs. Ну если вы будите подкручивать нижний клапан для уменьшения пропускной способности, то тогда занимайтесь такой регулировкой. Конечно, лучше будет использовать закрытые балансировочные клапана, к которым не будет доступа к регулировке посторонними людьми.
Для того, чтобы улучшить разделение расходов на 5 радиаторов с применением регулирующих клапанов с большей пропускной способностью необходимо использовать трубы ПП32, ПП25 и ПП20.
Хорошие цепи петли Тихельмана
Критерии выбора диаметров:
Выбор диаметров для петли Тихельмана выбираелся исходя из перепада цепи максимум 1 м.в.ст. Температурный перепад радиаторов 20 градусов. Температура на входе 90 радусов. Разница выдаваемой мощности между радиаторами не превышает 200 Вт. Разница температурных перепадов между радиаторами не превышает 5 градусов.
Примечание:
Указанные диаметры не применяются для низкотемпературных систем отопления. Для низкотемпературных систем нужно уменьшать температурный перепад до 10 градусов и это требует увеличение расхода в два раза.
Я приготовил цепи петель Тихельмана на 5 и 7радиаторов для металлопластиковой и полипропиленовой трубы.
5 радиаторов полипропиленовая труба, Kvs = 0,5.
5 радиаторов металлопластиковая труба, Kvs = 0,5.
7 радиаторов полипропиленовая труба, Kvs = 0,5.
В этой цепи используется ПП32 мм. Если вы поставите балансировочный клапан на 1 и 7 радиатор, то можно поменять трубу с ПП32 на ПП26 мм. Необходимо поджать балансировочные клапана на 1 и 7 радиаторах.
7 радиаторов металлопластиковая труба, Kvs = 0,5.
Тесты по выбору диаметров проводились в программе симуляторе системы отопления.
Подробнее о программе симуляторе
Программа применяется для тестирования систем отопления, перед тем как монтировать на объекте. Также можно тестировать существующие системы отопления, чтобы улучшать работу существующей системы отопления.
Если вам нужны расчеты диаметров для вашей системы отопления на 10 радиаторов, то обращайтесь за услугами по расчету сюда: Заказать услугу по расчету
Расчет петли тихельмана
Как и в двухтрубной тупиковой системе отопления, диаметры тоже приходится выбирать исходя из расхода и потерь напора теплоносителя. Петля Тихельмана является сложной цепью, и математический расчет сильно усложняется.
Если в двухтрубной тупиковой уравнение цепи выглядит проще, то для петли Тихельмана уравнение цепи выглядит так:
Подробнее о данном расчете рассказано в видеокурсе по расчету отопления тут: Видеокурс по расчету отопления
Как настроить петлю Тихельмана? Как настроить попутную систему отопления?
Как правило, у петли Тихельмана есть условия, когда средние радиаторы плохо греют в таком случае, как и в духтрубной тупиковой, зажимаем балансировочные клапана на радиаторах находящиеся ближе к котлу. Чем ближе радиаторы к котлу, тем сильнее зажимаем.
Серия видеоуроков по частному дому
Часть 1. Где бурить скважину? Часть 2. Обустройство скважины на воду Часть 3. Прокладка трубопровода от скважины до дома Часть 4. Автоматическое водоснабжение
Водоснабжение
Водоснабжение частного дома. Принцип работы. Схема подключения Самовсасывающие поверхностные насосы. Принцип работы. Схема подключения Расчет самовсасывающего насоса Расчет диаметров от центрального водоснабжения Насосная станция водоснабжения Как выбрать насос для скважины? Настройка реле давления Реле давления электрическая схема Принцип работы гидроаккумулятора Уклон канализации на 1 метр СНИП
Схемы отопления
Гидравлический расчет двухтрубной системы отопления Гидравлический расчет двухтрубной попутной системы отопления Петля Тихельмана Гидравлический расчет однотрубной системы отопления Гидравлический расчет лучевой разводки системы отопления Схема с тепловым насосом и твердотопливным котлом – логика работы Трехходовой клапан от valtec + термоголовка с выносным датчиком Почему плохо греет радиатор отопления в многоквартирном доме Как подключить бойлер к котлу? Варианты и схемы подключения Рециркуляция ГВС. Принцип работы и расчет Вы не правильно делаете расчет гидрострелки и коллекторов Ручной гидравлический расчет отопления Расчет теплого водяного пола и смесительных узлов Трехходовой клапан с сервоприводом для ГВС Расчеты ГВС, БКН. Находим объем, мощность змейки, время прогрева и т.п.
Конструктор водоснабжения и отопления
Уравнение Бернулли Расчет водоснабжения многоквартирных домов
Автоматика
Как работают сервоприводы и трехходовые клапаны Трехходовой клапан для перенаправления движения теплоносителя
Отопление
Расчет тепловой мощности радиаторов отопления Секция радиатора Зарастание и отложения в трубах ухудшают работу системы водоснабжения и отопления Новые насосы работают по-другому… Расчет инфильтрации Расчет температуры в неотапливаемом помещении Расчет пола по грунту Расчет теплоаккумулятора Расчет теплоаккумулятора для твердотопливного котла Расчет теплоаккумулятора для накопления тепловой энергии Куда подключить расширительный бак в системе отопления? Сопротивление котла Петля Тихельмана диаметр труб Как подобрать диаметр трубы для отопления Теплоотдача трубы Гравитационное отопление из полипропиленовой трубы
Регуляторы тепла
Комнатный термостат — принцип работы
Смесительный узел
Что такое смесительный узел? Виды смесительных узлов для отопления
Характеристики и параметры систем
Местные гидравлические сопротивления. Что такое КМС? Пропускная способность Kvs. Что это такое? Кипение воды под давлением – что будет? Что такое гистерезис в температурах и давлениях? Что такое инфильтрация? Что такое DN, Ду и PN ? Эти параметры нужно знать сантехникам и инженерам обязательно! Гидравлические смыслы, понятия и расчет цепей систем отопления Коэффициент затекания в однотрубной системе отопления
Видео
Отопление Автоматическое управление температурой Простая подпитка системы отопления Теплотехника. Ограждающие конструкции. Теплый водяной пол Насосно смесительный узел Combimix Почему нужно выбрать напольное отопление? Водяной теплый пол VALTEC. Видеосеминар Труба для теплого пола — что выбрать? Теплый водяной пол – теория, достоинства и недостатки Укладка теплого водяного пола — теория и правила Теплые полы в деревянном доме. Сухой теплый пол. Пирог теплого водяного пола – теория и расчет Новость сантехникам и инженерам Сантехники Вы все еще занимаетесь халтурой? Первые итоги разработки новой программы с реалистичной трехмерной графикой Программа теплового расчета. Второй итог разработки Teplo-Raschet 3D Программа по тепловому расчету дома через ограждающие конструкции Итоги разработки новой программы по гидравлическому расчету Первично вторичные кольца системы отопления Один насос на радиаторы и теплый пол Расчет теплопотерь дома — ориентация стены?
Нормативные документы
Нормативные требования при проектировании котельных Сокращенные обозначения
Термины и определения
Цоколь, подвал, этаж Котельные
Документальное водоснабжение
Источники водоснабжения Физические свойства природной воды Химический состав природной воды Бактериальное загрязнение воды Требования, предъявляемые к качеству воды
Сборник вопросов
Можно ли разместить газовую котельную в подвале жилого дома? Можно ли пристроить котельную к жилому дому? Можно ли разместить газовую котельную на крыше жилого дома? Как подразделяются котельные по месту их размещения?
Личные опыты гидравлики и теплотехники
Вступление и знакомство. Часть 1 Гидравлическое сопротивление термостатического клапана Гидравлическое сопротивление колбы — фильтра
Видеокурс
Скачать курс Инженерно-Технические расчеты бесплатно!
Программы для расчетов
Technotronic8 — Программа по гидравлическим и тепловым расчетам Auto-Snab 3D — Гидравлический расчет в трехмерном пространстве
Полезные материалы Полезная литература
Гидростатика и гидродинамика
Задачи по гидравлическому расчету
Потеря напора по прямому участку трубы Как потери напора влияют на расход?
Разное
Водоснабжение частного дома своими руками Автономное водоснабжение Схема автономного водоснабжения Схема автоматического водоснабжения Схема водоснабжения частного дома
Политика конфиденциальности
Традиционно используемые схемы отопления
- Однотрубная. Циркуляция теплового носителя осуществляется по одной трубе без использования насосов. На магистрали выполняется последовательное подключение радиаторных батарей, от самого последнего по трубе в котёл возвращается охлаждённый носитель (“обратка”). Система проста в исполнении и экономична за счёт потребности меньшего количества труб. Но параллельное движение потоков приводит к постепенному остыванию воды, в результате к радиаторам, расположенным в конце последовательной цепочке, носитель поступает значительно охлаждённым. Этот эффект возрастает при увеличении числа радиаторных секций. Поэтому в комнатах, расположенных вблизи котла, будет чрезмерно жарко, а в удалённых холодно. Для увеличения теплоотдачи увеличивают количество секций в батареях, устанавливают разные диаметры труб, дополнительную регулирующую арматуру, выполняют обустройство каждого радиатора байпасами.
- Двухтрубная. Каждая радиаторная батарея подключается параллельно к трубам прямой подаче горячего теплоносителя и “обратке”. То есть каждый прибор снабжается индивидуальным выходом в “обратку”. При одновременном сбросе остывшей воды в общий контур, теплоноситель возвращается на подогрев в котёл. Но при этом также нагрев отопительных приборов постепенно уменьшается по мере их удаления от источников подачи тепла. Радиатор, расположенный в сети первым, получает наиболее горячую воду и первым отдаёт носитель в “обратку”, а расположенный в конце получает теплоноситель последним с пониженной температурой нагрева и также последним отдаёт воду в обратный контур. На практике в первом приборе циркуляция горячей воды получается наилучшей, а в последнем наихудшей. Стоит отметить и возросшую цену таких систем по сравнению с однотрубными.
Обе схемы оправданы для небольших площадей, но неэффективны при протяжённых сетях.
Усовершенствованной двухтрубной является схема отопления Тихельмана. При выборе конкретной системы определяющим является наличие финансовых возможностей и способность обеспечения отопительной системы оборудованием, обладающим оптимальными требуемыми характеристиками.
Особенность отопления Тихельмана
Идея изменения принципа действия “обратки” была обоснована в 1901-ом году немецким инженером Альбертом Тихельманом, в честь которого и получила своё название — “петля Тихельмана”. Второе название — “возвратная система реверсивного типа”. Так как движение теплоносителя в обоих контурах, подающем и обратном, осуществляется в одном, попутном направлении, часто используется и третье название — “схема с попутным движением тепловых носителей”.
Сущность идеи состоит в наличии одинаковой длины прямых и обратных трубных участков соединяющих все радиаторные батареи с котлом и насосом, что создаёт одинаковые гидравлические условия во всех отопительных приборах. Равные по протяжённости циркуляционные контуры, создают условия прохождения горячим теплоносителем одинакового пути к первому и последнему радиатору с получением ими одинаковой тепловой энергии.
Схема петли Тихельмана: